Seminar Series on Graph Neural Networks 04
From Label Propagation to Graph Neural Networks

Yong-Min Shin
School of Mathematics and Computing (Computational Science and Engineering)

Yonsei University
2025.04.28

ASHHIASHE (HIAFIIOFOF € A
S| LB (A LHrera sy III L (A ] P
S

School of Mathematics and Computing

(Computational Science and Engineering) Gwangju Institute of Science and Technology



Before going in....

Towards application of graph neural networks

Towards efficient graph learning Explainable graph neural networks

Fundamental topics on graph neural networks

On the representational power of graph neural networks A graph signal processing viewpoint of graph neural networks

From label propagation to graph neural networks On the problem of oversmoothing and oversquashing

Introduction to graph mining and graph neural networks
(Basic overview to kick things off)

* Presentation slides are available at: .
(Some of the topics may change in the future for a better alternative) (jordan7186.github.io/presentations/) |m =




Understanding label propagation

Connecting between label propagation and graph neural networks
Understanding how homophily interacts with graph neural networks
Going beyond homophily: H2GCN

ENFRENIES



Understanding label propagation
Zhou et al., Learning with Local and Global Consistency, NeurlPS’04



Re-introduction to semi-supervised learning

Given data: Xz{afl,--- s Ly L1y " ,xn}
L1 Ty Ti+1 Ln
N J N J
' '
Only a portion of data Objective: to classify
is labeled. these data

Semi-supervised learning attempts to predict the labels of unlabeled data,
where the portion of labeled data is small.

Semi-supervised problem setting is very practicalin the sense that
labeling usually requires human effort
and labeling every data can be very challenging if the size of the data is huge.

“‘Such a learning problem is often called semi-supervised or transductive.”

Zhou et al. “Learning with Local and Global Consistency’, NeurlPS’04



Re-introduction to semi-supervised learning

(a) Toy Data (Two Moons) (a) Toy Data (Two Moons) . (c) Ideal Classification
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Exploiting the labeled information is based on two assumptions.

1. Local assumption:
Nearby points are likely to have the same label.
2. Global assumption:
Points on the same structure/cluster/manifold are likely to have the same label.

The labeled information is spread out through the whole data with these assumptions.




Re-introduction to semi-supervised learning

1. Setting and notations

labeled unlabeled
A A
e N\ N
Set of data points: X' = {x1,- - , 2, 1411, ,Tn}
Xezampte = {T1,- - , T} Set of labels: L={1,---,c}
T Tg Each data is/can be labeled from 1to ¢
Tg O O O
O F € RnXc Interpretation of F Y € RnXc
Is5 p
O O EEEETnE H BTN :
L4 T3 argmax; < .Fi; ‘ :
[TT .
2,0 & n < —> :
Toy example of 8 data points
(arbitrarily ordered)
\
%/_)
C Y stores the labels of

The elements of Fmatrix predicts the labels. {21, 21}



Re-introduction to semi-supervised learning

2. Calculating the affinity matrix

O O :
O(C)) O(C)) x;: data point
Wij = exp(—||z; — x4(|*/20?)
O O Calculate the weights between each data point
O ) with respective to the distances.

Toy example of 8 data points, with the perspective of
the red data point.

This is an interpretation of the data points as an undirected weighted fully connected graph
G=(V,FE)

where the vertices are data points, and edge weights are calculated by the formula above.
Therefore, we can also think W;; as the adjacency matrix.




Re-introduction to semi-supervised learning

2. Normalization

S =D 1/2WD™1/2

D = diag(dy, - ,dp—_1,dy), d; = ZWz‘j

F(t+1) =[aSFE)+ [T = a)Y T!F(O) mF(t) E!(t +1)
5 g 0 / 5 é) o —— I I
n < » - » =
| 5 ® \H_) : :
Receives information from Retains information of itself, ¢

neighbors, scaled down to «. scaled down to (1 — a).



Re-introduction to semi-supervised learning

Proof of convergence

Let F(0) =Y.

l

F(t+1)=aSF(t)+ (1 —a)Y

F(1)=aSY +(1—-a)Y
F2)=aS(aSY+(1-a)Y)+ (1 —-a)Y
= (S)?’Y + (1 —a)(1+aS)Y
FB)=aS@SaSY+(1—-a)Y)+(1—-a)Y)+ (1 —a)Y
= (@S)?’Y + (1 —a)(1 + aS + (aS)?)Y

~
|
—_

Fit)=(a9)Y +(1—-a)) (aS)Y

>
|
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Re-introduction to semi-supervised learning

Proof of convergence
F(t) =[(aY + (1 — ) tz_f(asyy
lim? — o0 ZOllimt—>oo
O (I —aS8)™

Therefore, the limit of the sequence F'™* is:
F*=(1-a)(I—-aS)™!

Which is also the minimum to the cost function:

Wil Fi|? +p ) [|F: = Yil]?)
”ZQ\F RN

l 1. Enforce two predlctlons 3. Follow the initial label
to be the same...

2. If they are strongly
connected...



Connecting between label propagation and graph neural networks
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We can also view GNNs from the lens of label propagation

Neighbor count: 3

O O O O 4000
O O Neighbor count: 4 5 0 3 0 0
Q O Neighbor count: 3 - 10 0 3 0
0 0 0 2
Neighbor count: 2
ﬁ) O O
1 1 1 1
>4 4 V12 V2 VB
o ® R L L
— = - 0
12 3 3
T
NG 2
t—1
Ft:aStY+1—a§ aS)'Y ~
(1) = (a5) ( ) 0( ) < > Final layer of GCN: 0 (AX ©)
1=
Local assumption: Nearby points are likely to have the same
label.
> Does this mean GNNs thrive under similar assumptions?

Global assumption: Points on the same
structure/cluster/manifold are likely to have the same label.



We can also view GNNs from the lens of label propagation

Theoretical connections between LP & GNN
Ma et al,. A Unified View on Graph Neural Networks as Graph Signal Denoising, CIKM’21

PROBLEM 1 (GRAPH SIGNAL DENOISING). Given a noisy signal S €
RN*4 on a graph G, the goals is to recover a clean signal F € RNVX4,
assumed to be smooth over G, by solving the following optimization
problem:

argml;n L =|F- Sll?: +c - tr(FTLF). (8)

THEOREM 3. When we adopt the normalized Laplacian matrix
L =1— A, the feature aggregation operation in GCN (Eq. (2)) can be
regarded as solving Problem 1 using one-step gradient descent with

X’ as the input noisy signal and stepsize b = zlc

-

Re-introduction to semi-supervised learning

Proof of conver: gence

=1
Ft) =[]y + (1 - «) Z((tS)'Y
i=0

limt — oo llimt — 00

19) (I-aS)~t

Therefore, the limit of the sequence F* is:
F*=(1—-a)—aS)™!
‘Which is also the minimum to the cost function:

L . . ‘ " )
QF) = 5(>_ Will—==Fi — —==F|* + n)_IF: - Yi||*)
2 ,Zl "D VDj;’ ;

7= Y Y
3. Follow the initial label

l 1. Enforce two predictions

The theorem states that GCN and LP essentially solves the same problem, i.e., signal denoising in graphs



GNNs and LPs are natural low-pass filters

Theoretical connections between LP & GNN
NT & Maehara, Revisiting graph neural networks: All we have is low-pass filters. arXiv 2019 (citation > 500)

Assumption 1. Input features consist of low-frequency true features and noise. The true features
have sufficient information for the machine learning task.

- “...Multiplying the (normalized) adjacency matrix corresponds
— to applying graph filter h(A\) =1—-A\.”

(2) - [Theorem 3] (Informal) Multiplying the adjacency matrix with
self-loops shifts the frequency of the graph signal towards
’ — zero, effectively applying a low-pass filter.
(3)
 I—

AX - The graph filter 1 — A is also the first-order Taylor

‘ (1) é 1 (1) — approximation of the optimal solution to the problem of graph
Or== 110 0lle= signal denoising:
0 1 1 1 1 0 0 0/ \e== (! |
4|1 010 F(z‘.):(uS)’Y+(1—n)Z(nS)'Y
1 1 0 O i=0
1 000 lim? — oo llimt—)oo
O (I —aS)!

Therefore, the limit of the sequence F™ is:

F*=(1-a)I - aS)"!



GNNs and LPs are natural low-pass filters

Theoretical connections between LP & GNN
NT & Maehara, Revisiting graph neural networks: All we have is low-pass filters. arXiv 2019 (citation > 500)

Assumption 1. Input features consist of low-frequency true features and noise. The true features
have sufficient information for the machine learning task.

Send fin vertex space to frequency space

= T
—— UL (low pass) £ T UAU ,C - D - A
NL (low pass)
--- Raw features

Result for Cora
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Apply a filtering function /7to eigenvalues

0.5 1
I+ /\() 0 h(/\()) 0
§ 0.4 A= ) » h(A) =
£ 0 N1 0 h(Av-1)

0.3 1

The performance peaks when we only In this experiment, we use an ideal low-pass filter,
0.2 . .
; i which leaves the lowest k frequencies
I use the lowest 400-ish frequencies 9

untouched and everything else to zero.

0.1

Send back to vertex space

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601 1701 1801 1901 2001 2101 2201 2301 2401 2501 2601 2701

T
Number of k used (from lower frequency) fnew — Uh (A) U f

Experimental results are my own, see: https://jordan7186.github.io/blog/2022/Cora_spectral/



Understanding how homophily interacts with graph neural networks
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Definition of homophily

Annu. Rev. Sociol. 2001. 27:415-44
Copyright (© 2001 by Annual Reviews. All rights reserved

BIRDS OF A FEATHER: Homophily
in Social Networks

“Homophily is the principle that a contact
Miller McPherson', Lynn Smith-Lovin!, and between similar people occurs at a higher
James M Cook? rate than among dissimilar people.”

Department of Sociology, University of Arizona, Tucson, Arizona 85721;
e-mail: mcpherson@u.arizona.edu; smithlov@u.arizona.edu

’Department of Sociology, Duke University, Durham, North Carolina 27708;
e-mail: jeook@soc.duke.edu

Key Words human ecology, voluntary associations, organizations

* In social networks, race/ethnicity-based homophily create the most distinctive divides among people

* Sex, age, religion, and education is also a strong source of homophily

* Occupation, network position etc. also show homophily properties but somewhat limited

Miller McPherson et al., Birds of a feather: Homophily in social networks, Annual Review of Sociology 2001 27:1, pp. 415-444



Measurement of homophily

Zhu et al., Beyond homophily in graph neural networks: Current limitations and effective designs, NeurlPS’20

01 00 0
1010 1
A=10 1 0 1 0
001 01
01 0 1 0

Adjacency matrix

Label1 @
Label2 @

Given graph

Count edge with same labels

_ R v)[(u,0) € € Nyu = 3o}

€]

2
=—-=04
5!

Edge homophily ratio



Measurement of homophily

Pei et al.,, Geom-GCN: Geometric graph convolutional networks, ICLR’20

Label1 @
Label2 @

1 1
[0 1 0 0 0] 3 2 1 Num. of neighbors with same labels
L0 1 01 = h:mz Num. of neighbors
A=10 1 0 1 O veV | &
0O 01 0 1
0 1 0 1 0 1 1 1 1 1
4 :_(O_|___|___}_——|——)%0367
Adjacency matrix 5) 3 2 2 2
5 5)
Given graph Node homophily ratio

(Foucsing on node 2)



Due to the low-pass characteristics, GNNs implicitly assume homophily

Zhu et al., Beyond homophily in graph neural networks. Current limitations and effective designs, NeurlPS20

“GNNs model the homophily principle by propagating features and aggregating them within various graph neighborhoods via different
mechanisms (e.qg., averaging, LSTM)”

Bo et al., Beyond low-frequency information in graph convolutional networks, AAAI'21

“In general, GNNs update node representations by aggregating information from neighbors, which can be seen as a special form of low-
pass filter. ... this mechanism may work well for assortative networks, i.e., similar nodes tend to connect with each other.”

Pei et al., Geom-GCN: Geometric graph convolutional networks, ICLR20

“The MPNNSs with such aggregation are inclined to learn similar representations for proximal nodes in a graph. ... they are probably
desirable methods for assortative graphs (e.g., citation networks and community networks) where node homophily holds (i.e., similar
nodes are more likely to be proximal, and vice versa), ....”



Empirical trend: Homophily and GNN performance

An experiment inspired by (Zhu et al., NeurlPS 2020)

Synthetic-cora dataset
- Cora (Yang et al,, ICML 2016) is the most widely-used benchmark dataset in graph learning.
- Node: Papers, Edge: Citations, Node features: Binary encoding of abstract.
- Typical task: Node classification. Correctly classify 2708 nodes according to one of seven classes (research area).
- Synthetic-cora: Based on the original Cora dataset, re-generate a new graph according to a target homophily ratio.

- Node features are all sampled from the original dataset.
- Edges are all reconstructed: Based on the BA model (Barabasi—Albert model / Preferrential attachment model)

- In this way, we can generate realistic graphs with various homophily ratios

Homophily ratio reproduction of generate_synthetic_cora

\\\\\\\\\\\\\\\\\\\

Ideal homophily ratio (x, red)

Example of BA-model generating a graph Syn-cora (h=0.0929) Syn-cora (h=0.8325) vs. Realized homophily ratio

Zhu et al., Beyond homophily in graph neural networks: Current limitations and effective designs, NeurlPS 2020 (y, blue)

Yang et al., Revisiting semi-supervised learning with graph embeddings, ICML 2016 (citations >2600)
BA-model example: https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model



Empirical trend: Homophily and GNN performance

An experiment inspired by (Zhu et al., NeurlPS 2020)
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Imagine the adjacency matrix = transition matrix.
As time goes by, we apply the transition matrix
Therefore, powers of the adjacency matrix shows
the diffusion process

Get transition matrix with
self loops

= Dfl/QADfl/Z

¥

Denoise by diffusion
(sum of transition matrix)

5= 0,0t
k=0

3

Sparsify
S = sparsify(S)

¥

Renormalize

Ly= D V25D 112

One more thing: GDC (Graph Diffusion Convolution)
A pre-processing step directly on the graph

Diffusion as in “heat diffusion”: Image heat sources as
nodes and steel edges

- Each single heat source will spread over time

Why is the power of the transition (normalized
adjacency matrix) important?

- Think of the heat spreading simulation in a
discretized time frame

GDC is also based on the assumption that the given
graph is strong in homophily: Intuitively, adds more
connection to (structurally) nearby nodes.

- Therefore, it can improve the node classification
performance when applied to datasets with
already high levels of homophily

- Then how about the opposite (heterophily)?

If you are interested in GDC (Graph Diffusion Convolution): Gasteiger et al., Diffusion improves graph learning, NeurlPS 2019
Transition matrix example: Aleti et al., Is perturbation an effective restart strategy?, arXiv 2019



1.0

0.8 1

o
o

Performance (Accuracy)

o
'S

0.2 4

0.0 “

Empirical trend: Homophily and GNN performance

An experiment inspired by (Zhu et al., NeurlPS 2020)

Effect of GDC for different levels of homophily

= Cora

s Cora + GDC

0.1

0.2 0.3 04 0.5 0.6 0.7 0.8
Homophily ratio

Running GCN on Syn-Cora with various homophily ratios

09

GCN performs bad in heterophilic regions
And its even worse with GDC
And vice versa!



Going beyond homophily: H2GCN
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Motivation: We need a GNN that is also good in heterophilc graphs

How does homophily ratios affect node classification for other architectures?

Table 1: Example of a heterophily setting
(h = 0.1) where existing GNNs fail to
generalize, and a typical homophily setting
(h = 0.7): mean accuracy and standard
deviation over three runs (cf. App. G).

* It’s not just GCNs, its all general message-passing

h=0.1 h=0.7 GNNs

GCN [17] 37 1444 60 84.5240.54 :’IL:: is an irppo;ta?nt baseliner; sitncetit oqufuses:od)e

GAT [36] 33.11+1.90 84.03+0.97 eatures as |.npu (i.e., no graph structure in ormg'lon
H2GCN achieves good results on both homophilic and

GCN-Cheby [7] 68.10+1.75 84.92+1.03 heterophilic datasets, but how do they achieved this?

GraphSAGE [11]  72.89+2.42 85.06+0.51 ’

MixHop [1] 58.93+2.84  84.43+0.94

MLP 74.85+0.76  71.72+0.62

H>GCN (ours) 76.87+0.43 88.28+0.66




3 modifications of the original message-passing mechanism

Modification 1. Ego (self) and neighbor embeddings are separated

Observation 1 Observation 2
h=01 h=0.7 GCN and GATs perform poorly GraphSAGE is kind of okay
GCN [13] 37.14+4.60 84.52+0.54
GAT [32] 33.11+1.20| 84.03+0.97 GCN, GAT GraphSAGE
GCN-Cheby [5] [68.10+1.75 84.92+1.03 Ego Ego
GraphSAGE [8] [72.89+2.42 85.06+0.51

MixHop [1] 39.60+3.65 82.68+1.01
MLP 74.85+0.76  71.72+40.62
H>GCN (ours) 76.96+0.82 88.10+0.41

GCN: degree-normalized average

GAT: attention-based weighed sum Concatenate

Mt(hjth h%a 612)

| \
'U; = concat(h},m!) ‘
» . t+1

_______________

Mixing the sum (or variant) of neighbor embeddings with ego embedding via
update function harms expressiveness in heterophily settings.
Mt(hﬁ,hg,615) P P phily g

Fix the update function as the concatenation function.

U; = concat(ht, m})



3 modifications of the original message-passing mechanism

Modification 2. Aggregating from higher-order neighborhoods

Only aggregates over immediate

h=0.1 h=0.7
GCN [13] 37.14+4.60
GAT [32] 33.11+1.20

(GCN-Cheby [5] 68.10+1.75|
GraphSAGE [8] 72.89+2.42
(MixHop [ 1] 39.60+3.65|

Only aggregates over immediate
Models each hop neighbors differently
Only aggregates over immediate
Explicitly models 1 & 2 hop neighbors

MLP 74.85+0.76

71.72+0.62

H>GCN (ours) 76.96+0.82

88.10+0.41

Agg.

func. #1

U, = concat(hl, m})

ht—l—l

____________

1

U

Theorem 2 (informal) Under certain conditions, the 2-hop neighbors will be homophily-dominant in expectation.

Explicitly aggregate 1,2,3, ... hop neighbor information without traversing through lower hop neighbors



3 modifications of the original message-passing mechanism

Modification 3. Incorporate jumping knowledge

final __ . 1 3,2 K
hy ™" = combmi(hl, hi, -+, hi)
Combine all intermediate representations at the final layer
Agg. func. #1 J '

U; = concat(h}, m})

N ht1+1 = h%,h%,--o ,h{(
Uy

h=0.1 h=0.7
GCN [13] 37.14+4.60 84.52+40.54

“By concatenating the intermediate representations from two rounds with the embedded ego-representation (following the jumping knowledge
framework), GCN'’s accuracy increases to 58.93%+3.17 for h = 0.1, a 20% improvement over its counterpart without design D3 (Table 1).”

Jumping knowledge is first introduced in the graph learning literature by:
Xu et al,. Representation learning on graphs with jumping knowledge networks, ICML 2018



Final form: H2GCN

1_
Mod 2: Explicitly aggregate 1-hop and 2-hop neighbors separately
0.9
k k—1 < k—1) | ¥
08 r{¥) — COMBINE (AGGR{r; )i ue Ni(v)}, AGGR{r ™ : u e N, (v)})
S
§ 07 —— H2GCN-2
< 06 -+ H2GCN-1 (ﬁ
7 nal) ‘ (0)f 1.(1) (K)
(7] GCN-Cheb |
3 o5 _conchey r, COMBINE (|r,, /L ry 7, ...,y
—e— MixHop y
0.4+ —— GCN
—— GAT
03 | | . ] MR Mod 1: Separate processing of the ego (self) node Mod 3: Jumping knowedge
0 0.2 0.4 0.6 0.8 1




Analysis of the design choices

No(V): Ego (self) node
N,(v): Immediate neighbors (1-hop)

Excluding 1-hop or 2-hop N,(v): Neighbor’s neighbor (2-hop)

Separate ego and non-ego neighbors slightly deteriorates
performance. Excluding the ego (0-hop) is a
really bad idea.

Mix ego and non-ego /

. ;. / ]
> 0.9- > 0.9 pora/ > 0.9-
S 081>y S 087 “w =¥~ 7 S 0.8
8 0.7 - 8 0.7 - 8 0.7 ‘
&) ' &) . : O .
== H2GCN-1 [SO] -+ H2GCN-1
< 061 '~ Only N1 [S1] < 06 | = 061 —= No Round-0 [K0]
A 0.5 | D 05+ ‘== w/0 No(v) [NO] 3 0.5 No Round-1 [K1]
— 0.4 —— N1 + N2 [NSO] — 0.4- —— w/0 Ni(Vv) [N1] = 0.41 —— No Round-2 [K2]
' Only N1 [NS1] ' w/o N2(v) [N2] ' --e- Only Round-2 [R2]
0.3 1 r r . , 0.3+ 1 , : . . 0.3 — 1 l : . T
O 02 04 06 08 1 O 02 04 06 08 1 O 02 04 06 08 1
h h h
Mixing ego and non-ego fails at heterophily Ego information is very important in Ego information is very important in JK.

neighbor modeling



Takeaways

1. Label propagation is highly based on the local & global consistency assumption of the dataset
2. GNNs and label propagation are related, also aligning with the low-pass filter discussion
3. Therefore, GNNs are natural for homophilic datasets.

4. H2GCN: How to modify the message-passing architecture to bypass the homophily limitations?

*Although not included in this presentation, there are multiple studies that goes beyond homophily in GNNs, including:
Pei et al,. Geo-GCN: Gemetric graph convolutional netwokrs, ICLR 2020

Deyu Bo et al., Beyond low-frequency information in graph convolutional networks, AAAI 2021

Chien et al., Adaptime universal generalized PageRank graph neural network, ICLR 2021



Thank you!

Please feel free to ask any questions :)
Jjordan/186.github.io

33



